Development of neutron flux detectors for boron neutron capture therapy

Xingcai Guan¹, Isao Murata², Tieshan Wang¹

¹ School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu Province 730000, China ² Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan

Abstract

Boron neutron capture therapy (BNCT) is a promising binary cancer radiotherapy which can selectively destroy tumor cells while sparing normal tissues. The neutron source is a key factor for BNCT. The epithermal neutron (0.5 eV ~ 10 keV) flux is one of basic characteristics for the BNCT neutron source. Therefore, the epithermal neutron flux measurement of a BNCT neutron source is very important for its quality assessment and developing the treatment planning system.

Basic principle of BNCT

In this work, neutron flux detectors are developed for BNCT to accurately measure the epithermal neutron flux of the BNCT neutron source. These detectors work well and they will be efficiently applicable in BNCT quality assurance.

The epithermal neutron flux detectors

Fig. 1. Schematic view of the epithermal neutron flux detector using 71 Ga(n, γ) 72 Ga reaction developed for BNCT.

The neutron flux detectors from 20 keV to 1 MeV

Fig. 6. Sensitivity difference between detector 1 and detector 2. The solid line represents the value of zero; the dotted and dashed lines represent the mean values of the ⁷²Ga yields produced by neutrons below 20 keV (solid rhombi) and neutrons from 20 keV to 1 MeV (solid circles), respectively.

Fig. 2. Sensitivities of the epithermal neutron flux detector using 71 Ga(n, γ) 72 Ga reaction developed for BNCT.

Fig. 5. Schematic views of the neutron flux detectors from 20 keV to 1 MeV developed for BNCT. (a) is for detector 1 and (b) is for detector 2.

Table 1. Specification of the materials used in the neutron flux detectors.

Material	Description	Role
GaN	Gallium nitride	Activation material
Mn	Manganese	Activation material
Cd	Cadmium	Thermal neutron absorber
B ₄ C	Boron carbide	Thermal/epithermal neutron absorber
PE	Polyethylene	Neutron moderator

Fig. 3. Schematic view of the epithermal neutron flux detector using ⁵⁵Mn(n,γ)⁵⁶Mn reaction developed for BNCT.

_ ۳		<u> </u>
1.0x10 ⁻³	 For thermal neutrons 	For epithermal neutrons
	For fast neutrons	—— Averaging for epithermal neutrons

Photos of the neutron flux detectors

Fig. 4. Sensitivities of the epithermal neutron flux detector using ${}^{55}Mn(n,\gamma){}^{56}Mn$ reaction developed for BNCT.

(a) The epithermal neutron flux detector

(b) The neutron flux detectors from 20 keV to 1 MeV

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11905090) and Fundamental Research Funds for the Central Universities of China (Izujbky-2017-15).

References

[1] Guan et al., 2019. *JINST* 14: P06016 [2] Guan et al., 2018. *JINST* 13: T05003 [3] Guan et al., 2017. *JINST* 12: P09013 [4] Guan et al., 2017. J. Nucl. Sci. Technol. 54: 1118-1122

[5] Guan et al., 2017. Appl. Radiat. Isot. 125: 119-123 [6] Guan et al., 2016. Appl. Radiat. Isot. 113: 28-32 [7] Guan et al., 2016. *J. Nucl. Sci. Technol.* 53: 1112-1119 [8] Guan et al., 2015. *J. Nucl. Sci. Technol.* 52: 503-508

Lanzhou University, Lanzhou, China

Contact: Xingcai Guan guanxc@lzu.edu.cn

ISINN-28, May 24-28 2021, Xi'an, China